Measuring Contributions to Email-Based Discussion
Groups

lan Pye
UC Santa Cruz
Department of Computer Science

ipye@cs.ucsc.edu

ABSTRACT

Email-based discussion groups are a vast source of non-canonical
crowd sourced information. However, due to their open nature
(anyone can post), evaluating the quality of answers is challeng-
ing. In this work, we develop a framework for analyzing author
contributions to email-based discussion groups.

Sentiment analysis is the process of extracting the overall feeling
from a body of text. We present a novel technique which applies
sentiment analysis to evaluate the quality of answers. We present
six novel algorithms and compare their results to a manually cal-
culated baseline, two machine learning algorithms, and two algo-
rithms based on link analysis. We find that by using sentiment anal-
ysis, our algorithms out perform both the machine learning and link
analysis approaches in most experiments. We also find that a sim-
ple text-based approach without sentiment analysis is surprisingly
powerful.

1. INTRODUCTION

Email-based discussion groups are frequently the first place a
knowledgeable user will look for help when confronted with a tech-
nical problem. Precisely because users may interact directly with
other users in search of a solution, discussion groups are a trove of
information. Their open nature means that not all answers are of
similar quality.

We present a framework to analyze the quality of user contribu-
tions to email-based discussion groups. We developed six novel
algorithms which accurately measure the contribution each user
makes in this semi-structured environment with minimal supervi-
sion. From this contribution measurement, we calculate a reputa-
tion for each author. In our results section, we show that author
reputation is a good predictor of future answer quality.

Evaluating the quality of community question answering (CQA)
forums and general email exchanges are the focus of much recent
research [2, 7, 4]. CQA forums are highly structured: there is one
question and multiple answers. The question is a request for in-
formation and all answers are attempts to provide this information.
Mapping a CQA forum to a graph of user interactions results in a
tree, with each posting having exactly one parent to whom they are
replying.

In contrast, email exchanges are much more decentralized and
free-form. Anyone can email anyone about any subject. Both state-
ments and questions are allowed; a graph of interactions between
authors can contain many cycles.

Discussion groups occupy a position between these two extremes.

As in a CQA context, each thread begins with a root message, to

Copyright is held by the author/owner(s).
WWW2010, April 26-30, 2010, Raleigh, North Carolina.

Luca de Alfaro
UC Santa Cruz
Department of Computer Science

luca@cs.ucsc.edu

which answering authors respond. The key distinction between
CQA and discussion groups is that answering authors can respond
to each other, in addition to the root question. While they enforce
an absence of cycles, they allow more general interactions than a
straight question and answer format. In our message sample, we
observe feature announcements and a user poll, in addition to the
prevalent paradigm of problem descriptions accompanied by a re-
quest for help.

Previous work in the areas of answer quality rating and expert
identification rely on features such as message length and timing,
message frequency, as well as explicit rating mechanisms such as
the ratio of thumbs up to thumbs down for each message. Addi-
tionally, several authors [2, 4] use link analysis algorithms such as
HITS [15] in their analysis.

We approach the problem from a textual standpoint, leveraging
the content of messages to determine author scores. We do not
rely on any external explicit ratings, as these do not usually exist
for discussion groups. Our main algorithm does not require any
supervision at all.

A discussion group is composed of multiple conversation threads.
Each thread is treated as a separate case: an author’s reputation over
an entire group is simply the sum of that author’s reputation in each
thread in which the author participates. While doing so they may
quote other answers. Therefore, a post in a discussion group is
composed of original text, written by the post’s author, and quotes,
which were written by an earlier author.

Our framework parses a discussion group, determining the tree
of threads, questions, and answers. Each quote is mapped back to
the message where this quote originally appeared. Additionally, the
sentiment for every original line is computed.

Sentiment analysis, or opinion mining, is the process of deter-
mining the opinion of a speaker on a given topic. We break the
sentiment of each message into positive, negative, and objective
scores. We then use the ratio of positive to negative sentiment to
judge how the current author feels about quoted text.

For example, consider the following two messages which are in-
cluded in our sample set.

Message 1:

...Using distributed cache is actually
not that tough from pig...

Message 2:

Great tip.
Many thanks, I’11 try it.

...Using distributed cache is actually
not that tough from pig...

Since the original content of Message 2 is highly positive in
tone and it quotes Message 1, our algorithm boosts the contribu-
tion score for the author of Message 1. The amount of boost is
determined by the exact ratio of positive to negative sentiment, as
well as the current contribution score of author two. Our system is
content driven: users gain reputation through the ratings of other
users, but users do not rate each other directly. Instead, they rate
though their replies, implicitly the content other users create.

To place the effectiveness of our sentiment based approach in
context, we implemented several other algorithms, including HITS
and PAGERANK. We also use the Weka framework [26] and an ar-
tificial neural network to boost the correctness of our author repu-
tations.

Experimental Results

To evaluate the effectiveness of our algorithms, two testers each

labeled every responding email in fifty threads from the pig-user@

hadoop.apache. orgdiscussion group with the percentage that
the tester believed the email contributed to the overall resolution
of the thread. Every message was labeled by both testers, and
the mean of these two labels were used. We chose pig—user@
hadoop.apache. org because the conversation graphs in many
of the threads are relatively complex compared to those we ob-
served in other lists.

The output of each algorithm is a mapping from each author to
a contribution score. Our evaluation compares these programmat-
ically generated results against those given by our manual contri-
bution labels. We use three measurements of numeric similarity:
vector distance, the correlation coefficient, and relative entropy. In-
triguingly, the relative rankings of our algorithms using each of
these metrics are largely similar. Our final sentiment-based algo-
rithm performs better than the pure link analysis based approaches.
Interestingly, our naive approach of giving each author in a thread
equal credit for contributing out-performs all of the more sophisti-
cated approaches. This occurs because, for certain types of threads
in our sample, answers are all equally correct; our human label-
ers respond accordingly while our automatic systems fail to. This
shows that for best results one needs to determine the thread type
before analyzing the contributions of its authors.

In addition, we look at the precision of each algorithm in spotting
the “best” response to each thread. HITS is able to outperform
our best-sentiment based algorithm in this setting, but the naive
algorithm still provides the best result, depending on how ties are
broken.

Our Contributions

To the best of our knowledge, our work is the first to apply sen-
timent analysis to the challenge of evaluating the relative quality of
discussion posts. Additionally, our target area of email based dis-
cussion groups is very large and well established', yet few studies
have looked at ways of separating better posts, and better authors,
from poorer ones. As these types of discussion groups function as
key secondary information repositories in many areas such as open
source software, an effective way of scoring user contributions is
needed. Our system allows the rapid processing and evaluation of
such discussions, outputting a contribution reputation for each au-
thor involved in the discussion group. From this, experts in a sub-
ject can be easily identified and users can be warned about posts of
dubious quality.

2. RELATED WORK

Our work bridges several areas including expert finding [7, 4],
discourse mapping [22, 23], and the prediction of future quality

"'Usenet has been going strong since 1979.

via reputation systems [1, 21]. In this section we provide a brief
summary of related work in each of these areas.

Expert Finding and CQA Forums

Expert finding is the problem of identifying a subset of the to-
tal population who are highly knowledgeable on a given subject.
This is useful in organization mapping and performance evalua-
tion. Campbell et al. [4] evaluate the effectiveness of finding ex-
perts based solely on a corpus of email text as compared to using
both text and a graph of communication patterns. They find that
by using the link analysis-based HITS (Hyperlink-Induced Topic
Search) algorithm [15], they achieve a more accurate result than
counting topic frequency in the email corpus and assigning reputa-
tion for a topic based on how frequency the topic is mention.

Bian et al. [2] apply machine learning to more effectively rate
the quality of questions and answers in CQA forums. The authors
break reputation down into “question” and “answer” quality val-
ues. Using a set of 250 question/answer sets from Yahoo! Answers
labeled as good/bad, the authors apply logistic regression to get
an accurate prediction of future question and answer quality with
limited training. They achieve good precision in selecting the best
answers in a set. However, their approach requires explicit user
ratings of all answers.

Zhang et al. [27] also measure expertise in a user forum, looking
at the effectiveness of HITS vs the PageRank [19] algorithm. They
only use the graph structure for their algorithms, and do not look at
the posts’ text. Dom et al.[7], also apply link analysis algorithms
to evaluating email expertise.

We find experts tangentially; we rate user’s contributions to a dis-
cussion dedicated to a particular product, but we do not attempt to
explicitly validate the top scorers as being experts in the discussion
group’s topic. We are exploring this connection in future work.

Discourse Mapping

Most prior research on email-based discussion groups has fo-
cused on discourse mapping. Several groups have explored visu-
alizing and re-constructing the flow of conversation in discussion
groups and email. In [22], the authors created a tool which parses
Usenet groups to find who is citing and replying to whom, as well
as the main themes of a discussion thread. Carenini et al. [5] look
at summarizing discussions by studying the patterns of quotation in
email exchanges. They also attempt to rank the importance of dif-
ference sentences in a conversation. The GroupLens project [16]
is another attempt to filter Usenet posts. Using collaborative filter-
ing, the project tries to predict conversations of interest to a user.
Karagiannis et al. [14] reconstructs the flow of email in the more
free-form environment of a large corporation rather than a discus-
sion group such as Usenet. On a broader level, Sinatra et al. [23]
look at ways of visualizing how the major and minor ideas of a
written work are related.

Sentiment Analysis

Sentiment analysis is the process of extracting an option about a
topic from a body of text. This opinion is codified as three numbers
expressing the positive, negative and objective connotations of a
particular word. We combine these “word scores” to get positive
and negative scores for an entire discussion post. The sentiment
dictionary provided by the SentiWordNet project [8] provides the
basis of our analysis.

A recent book by Bo Pang and Lillian Lee [20] provides a good
rundown of current research in this area. Of particular interest,
Godbole et al. [10] have looked at the sentiment analysis of news-
papers and blogs. Also, Somasundaran et al. [25] take up the chal-
lenge of figuring out what the target of an opinion is. While we cur-
rently resolve this issue in our work by arbitrarily spreading opin-
ion across all quoted lines, a more fine grained approach has the

potential to greatly increase the accuracy of our algorithms. None
of these authors use sentiment analysis as the basis for a reputation
system.

Ghose et al. [9] come close to this. They look at the product re-
view system of Amazon.com They show that those products which
benefit the most from reviews have reviews which are strongly pos-
itive. Over time, this results in these products increasing in price.

Reputation Systems

We use reputation as a way to weight the positive and negative
statements made by authors. Without reputation, a statement which
is overwhelmingly positive or negative lacks context. Does the au-
thor have a history of making such statements? Do other authors
agree when the author makes such statements? With reputation, we
turn judging quality into a repeated game: we know what has hap-
pened in the past so when a new event occurs we are able to weight
the event accordingly. As with any reputation system, the validity
of reputation is defined by how much a user’s reputation is a good
predictor of the user’s future work

Specifically in our work, we use a form of reputation know as
content-driven reputation. As laid out in several recent works [13,
3], there are two major types of reputation systems. The first, far
more prevalent type are user-driven: they are based on users di-
rectly rating each other [21, 6]. In contrast, a content-driven rep-
utation system is built up from the rating of work which users
contribute, rather than rating other users directly. Our system is
content-driven because we update an author’s reputation based on
how other authors rate this author’s posts.

One recent example of a content driven reputation system is that
used by the WikiTrust project. In [1], the authors show that by
looking at the history of an author’s edits on the Wikipedia, accu-
rate predictions can be made about the life expectancy of the au-
thor’s future edits. In other words, those who have done good will
most likely continue to do good.

Lastly, in [11], Guha et al. look at how trust spreads in a social
network and show that even with each individual having a small
number of interactions, the composite graph of interactions allows
for accurate prediction of trust between any two persons. Since
relatively few authors directly quote one another in our evaluation
set, this property of trust inference is key to us.

3. PROBLEM DESCRIPTION

Our goal in this work is to automatically measure the contribu-
tion each author makes to an email-based discussion group. We
define broadly what types of discussions our tool works on: any
setting with an initial posting followed by responses, as long as re-
sponses can quote other responses. Therefore, we look at threads
which include single question and multiple answer style postings,
as well as threads which begin with a statement, such as the an-
nouncements of new features.

Following [2], we look at both quality and reputation. For CQR
forums in particular, Bain et al. define the following measurements
for individual questions:

e Question Quality: a score between 0 and 1 indicating a
questions effectiveness at attracting high-quality answers.

e Answer Quality: a score between 0 and 1 indicating the
responsiveness, accuracy, and comprehensiveness of the an-
swer to a question.

And from the question metrics, Bian et al. build up these author
reputation metrics:

e Answer-reputation: a score between 0 and 1, indicating the
expected quality of the answers posted by a user.

e Question-reputation: a score between 0 and 1, indicating
the expected quality of the questions posted by a user.

We keep the devision between question quality and answer qual-
ity, but choose to focus our effort on accurately calculating answer
quality. In this work, we fix question quality as being the num-
ber of answers a question attracts. The intuition is that authors
will only respond to questions which they believe are worth their
time answering. By fixing question quality, we are able to focus on
accurately determining answer quality. In the future, we hope to
explore more reactive ways of gauging question quality. Therefore,
we define:

e Question-quality: a score between 0 and oo, indicating the
number of answers the question attracted.

e Relative answer-quality: a score between 0 and 1, indicat-
ing the relative quality of the answer, compared to other an-
swers in the thread. For each thread, the sum of all relative
answer-quality scores is 1.

We take these two and combine them, generating a single value
which reflects the more ambiguous nature of general-purpose email
discussions, where what is a question and what is an answer is not
always well defined.

e Contribution-reputation: a score between 0 and oo, indi-
cating the expected quality of a user’s future contributions to
a discussion.

In practice, we arrive at an author’s contribution reputation score
by summing up the weighted question quality and unweighted an-
swer quality scores for each message that the author writes. In this
manner, prolific authors only gain reputation quickly if they pro-
duce high quality work.

e Predicting Author Contribution:

Given a general discussion group archive, com-
posed of multiple discussion threads, determine
the question and relative answer quality for all
messages in all threads in the archive. From these
message quality measurements, produce a contri-
bution reputation for each contributing author.

Formally, let «;, be the author contribution of the pth author over
all threads in a group. @), is the set of questions asked by «, while
A, is the set of answers. m is the question quality of message
i, while m¢ is the answer quality of message i. A is the set of
answers for the tth thread. « is the weight given to question quality.
Then,

apszng—l—Zm? (1)

meQp meAp

Where m{ = |A*|and Y, _ 4. m§ = 1.0.

This equation above holds for all of the algorithms we present in
Section 5. The difference between them lies in how answer quality
is calculated.

4. EXPERIMENTAL SETUP

In order to conduct an empirical study of the effectiveness of
our algorithms, we choose to focus on one particular discussion
group, pig-user@hadoop.apache.org, which is archived

online by the website Mail Archive [18]. Mail Archive is an on-
line collection of 673708042 postings in a variety of technical and
social discussion groups. We chose this repository because it pro-
vides a very large collection of messages, all of which are presented
in a standard HTML format.

To establish quality metrics, we annotated all of the respond-
ing messages from 50 threads from the pig-user@hadoop.
apache . org list with an answer resolution percentage®. To make
this score less subjective, we had two people label the same corpus.
Overall, the two labelers labeled 193 individual messages. Their in-
structions were to assign a percentage to each responding thread in
the corpus, representing their opinion of how much each message
contributes to the thread. We then take the mean of the two percent-
ages for each message as our canonical MANUAL value. This man-
ually annotated score provides a baseline against which to measure
our objective algorithms.

T T
12 manually labeled results ———
1+ + + ++ -+ + +T f —
0.8 - 4
<4
S
o
3 H
5] 0.6 - 7
f =
3
s + + + +
0.4 7
. f
0.2 - 4
o+
=¥ = j E[* 5’ %
350

300 400 450 500 550

MessagelD

Figure 1: In the graph above, the scores of the two labelers for
each message are represented by the y error bars. The “plus”
in the middle is the mean, used for scoring in the MANUAL al-
gorithm and as a baseline to judge other algorithms against.

Figure 1 shows the distance from this mean for each labeled mes-
sage; the two message labelers achieved a correlation of 0.692773.
79 messages were labeled exactly the same while 18 had labelings
which were off by 0.5.

For initial questions, we provide a weighted score based on how
many responses there were on the thread. We believe sparking dis-
cussion is also a contribution to discussion. Note that this initial
score is easily computable, and the same values are used in all of
our scoring algorithms.

4.1 Evaluation Criteria

We use four metrics for evaluation. Three of these compare the
sets of numerical values (author reputations) returned by each al-
gorithm, while the last, precision, is a measurement of binary clas-
sification soundness.

e Euclidian Vector Distance: We started with this metric,
which measures the distance between two vectors. We gen-
erate the vectors by mapping each author in the result set to

2as of July 19, 2009
3This dataset is available upon request.

a position in a vector, while the author’s contribution reputa-
tion provides the value. By comparing each algorithm’s re-
sults and the manually calculated results in turn, the Euclid-
ian distance formula provides a relative quality ranking. The
assumption here being that an algorithm’s quality increases
as its vector’s distance to the baseline vector decreases.

e Kaullback-Leibler Divergence: Also known as relative en-
tropy [17], this is a common technique to measure the dis-
tance between two probability distributions. Kullback Leibler
Divergence is calculated as D . (P||Q) = >, P(i)log ggzg .
Its benefit over Euclidian distance is that, since it measures
the distance between probability distributions, it does’t grow
as our sample size increases. Additionally, it is less respon-
sive to a few highly divergent values. To calculate the relative
entropy, we normalize our result vectors, generating a prob-
ability distribution for each algorithm. We map our manual
labelings to P(4), while each algorithm supplies Q(%).

e Correlation Coefficient:

Borrowing a common calculation from statistics, calculating
the correlation between two random variables indicates the
strength and direction of their relationship. Correlation is fre-
quently used in Machine Learning [12] to assess the quality
of an algorithm’s results. We use the correlation coefficient
as the primary comparison between the machine learning ap-
proaches we use and our other algorithms.

e Precision:

Precision is the ratio of true-positives to false-positives. We
treat the response in each thread with the highest manual la-
bel as being the “best” answer. Ties are broken in two ways:
we first favored the last response, since earlier responses still
needed the followup answer to completely answer the ques-
tion. Our results also look at how favoring the first response
in a tie effects the quality rankings of our algorithms. In each
case, true positives are defined by what the manual algorithm
returns for each thread.

S. IMPLEMENTATION

We have developed a framework for automatically parsing and
evaluating message threads implemented in the Objective Caml
language. Our framework works in two phases. The first phase
takes as input a url representing a discussion archive, for example

http://www.mail-archive.com/pig-user@hadoop.apache.

org, as well as the number of threads to process. This phase out-
puts a tree of discussion posts where a simple syntax of each mes-
sage and the overall discussion has been parsed.

Table 1: The grammar of a discussion group
Group = Thread list

Thread = Message tree
Message = Line list

Line = Original | Quote
Original = String

Quote = Message ref

Our message syntax breaks down messages on a per-line bases
into original content and quotes. Original content are lines which
appear for the first time in the thread in the current message. Quotes
are lines which appeared in other, previous messages. Commonly,

G,

these are prefixed with a “;” or “—” character. The compete gram-
mar is defined in Table 1. Our system matches up each quote it
finds with the message from which the quote was taken. Quotes of
quotes are matched up with the original message, not the interme-
diary message which was subsequently quoted again.

Once we have the basic syntax parsed, we move on to the se-
mantics of each message. For this, we use a dictionary of word
sentiment provided by SentiWordNet[8]. This assigns a positive,
objective and negative value to each word in the dictionary.

To use the dictionary, first we map every word back to its stemmed
form using the libstemmer C library. For example, both running
and ran stem to run. Ignoring objective values, we then sum up
the positive and negative values for every stemmed word of every
original line in each message. If a word is not found, we assign it
a score of 0 positive, 0 negative. This gives us a positive and neg-
ative score for each line. In order to enhance the speed of our tool,
we created a SentiServer web API that takes a stemmed word and
returns its positive, objective, and negative scores.

At this point, our algorithms diverge. Every algorithm described
below takes as input the parsed discussion group. Each algorithm
then outputs an array of author reputations. From these we calcu-
late the algorithm’s quality as described in Section 4.1.

The remainder of this section details how each of the eleven al-
gorithms we analyze do this. Using the sentiment scores and mes-
sage graph, we started out doing the simplest thing we could think
of. Each subsequent attempt tries to rectify some of the failings
we observed in the previous algorithms. Lastly, we describe our at-
tempts to boost the performance of our algorithms using supervised
machine learning.

5.1 Algorithms

All of these algorithms are ways of computing relative answer
quality (mé) for all answers in a thread. A user’s reputation is
computed from answer quality as described in Section 3. Note that
many threads terminate with a “thank you” message from the initial
author. To prevent this from skewing our results, we do not give a
score to posts by the initial author in any of our algorithms.

<

o MANUAL

For our manual analysis we simply use the mean of hand-
calculated scores for each message. This algorithm is the
baseline against which we evaluate all of the others.

Naive Approaches

® BASIC

Here, all answers are given an equal percentage of the credit.
In this way, BASIC simply measures the frequency of an au-
thor’s contributions. While there is no attempt to measure the
quality of an author’s contributions, this algorithm performs
better than any other approach. We believe that this non-
intuitive result is due to the question type mixture observed
in our sample set. We discuss this result more in Section 6.4.

® LAST

The LAST algorithm awards answers a score based on how
few messages are posted after them. The idea is that terminal
messages must be complete. Conversely, if there are a large
number of follow ups, there are still things to clear up.

Sentiment Analysis Algorithms

® BASIC-SENTI

BASIC-SENTI is our first attempt to evaluate and use the se-
mantic value of posts, rather than simply counting posts. First,
the ratio of positive to negative sentiment in each message’s
original lines is calculated. This is done by summing up all
of the positive values for each word and dividing by the sum
of the negative values.

We map discussion threads as trees. The original question
provides the root. As with email, each message is in response
to only one other message. This is the message’s parent. The
children of each message are those messages who respond to
it.

The ratio of positive sentiment to negative is used to boost the
score of the message’s parent, where the higher the propor-
tion of positive to negative sentiment is, the more reputation
this message gains. Messages cannot lose quality; a strong
negative ratio simply results in zero reputation gain.

® BASIC-PROP

The problem with BASIC-SENTI is that no attempt is made to
turn the raw message quality scores into proportional gains
over each thread. Normalizing the ratio results in the BASIC-
PROP (basic-proportional) algorithm. Here, each answer gets
a percentage of the total raw quality available corresponding
to the author’s percentage ownership of all of the awarded
contribution points. This normalization is used in all of the
later algorithms as well.

® SENTI-QUOTES

The problem with BASIC-PROP is that it ignores the informa-
tion found in quotes. In SENTI-QUOTES, the benefit of the
sentiment of the original lines are spread proportionally over
all messages quoted, rather than being given entirely to the
direct parent of a post. Additionally, the benefit is weighted
by the reputation of the current email’s author. SENTI-QUOTES
thus provides a content driven reputation system, where con-
tent is judged by other users and a positive judging results in
increased reputation.

For example, if message one is, "Set $foo to 5 for
best results”, while message twosays,”> Set $foo
to 5 —— this is true, $foo should be 57, our
tool would extract a sentiment score of (0,0,1) (positive, neg-
ative, objective) for message one and (1,0,1) for message
two. Since message two is quoting message one and has a
strong positive component, message one would gain reputa-
tion in proportion to the reputation of message two’s author.

® SENTI-NC

SENTI-NC (non-content-senti in figures) provides a counter-
point to SENTI-QUOTES. Rather than splitting the benefit up
among the quoted lines, it gives all of the quality boost to
the current message. We expected this algorithm to perform
poorly, but in our experiments it closely tracks the perfor-
mance of SENTI-QUOTES. We hypothesize that this is be-
cause authors who are certain of their response will write
message which are strongly positive in tone, and in our sam-
ple these positive messages are quality messages. Another
reason is that other authors are more likely to agree with
strongly positive messages.

Link Analysis Algorithms

e HITS

Other work [2, 4] use the HITS family of algorithm as a way
of estimating message quality. We implemented HITS using
the notion that parents have out-links to all of their children.
HITS, associates two non-negative scores with each node in
a graph: the authority score and the hub score [15]. The hub
score measures the value of a node as an in-link, while the
authority score measures the value of the node to its author.
We take the final authority score as the quality for each mes-
sage, normalized over the thread.

e PAGERANK

Additionally, we implemented the PAGERANK[19] algorithm.

In-links and out-links are the same as in HITS. This algo-
rithm calculates the probability that a random walk will re-
sult in a user getting to a page. For our purposes, we use
this value as the measure of a message’s quality. Normaliz-
ing the resulting values over a thread results in fairly good
performance.

Machine Learning Algorithms

e ANN

We next looked at training an artificial neural network on
the previous algorithms’ scores, attempting to closer approx-
imate the manual scores. Our approach uses a ANN with one
input neuron for each author in the set considered. There is
also one output for each author. Our input is the author rep-
utations provided by the previous algorithms. Our output is
a new author reputation set. We train the resulting ANN on
the first half of the threads in our dataset. We validate it on
the second.

e MS5P and LINEAR REGRESSION

We extracted the information described in Table 2 for use in
the popular machine learning tool Weka [26]. We fed the
features into two common techniques used for predicting nu-
meric values: MSP and LINEAR REGRESSION. Using the
correlation values provided by Weka, we show that neither
of these approaches performs especially well.

6. EXPERIMENTAL RESULTS

In this section we first present the relative effectiveness of our
textual and link analysis algorithms, measured in three different
ways. We then introduce the results from our machine learning
approaches, followed by a section evaluating the precision of all of
our algorithms. Lastly we discuss the impact of conversation type
on algorithm effectiveness.

Gratifyingly, the relative quality ranking of all of the algorithms,
shown in Table 3, mostly agree at the 50 thread mark. The ordering
for precision is strikingly different than that of the numeric quality
measurements above it. We discuss the reasons for this in Section
6.3.

6.1 Numeric Comparisons

As described in Section 5, we present three main measurements
of numeric quality: Vector Distance, Relative Entropy and Corre-
lation.

Overall, SENTI-NC and SENTI-QUOTES algorithms very closely
track one another, PAGERANK is the clear winner over HITS, and

20

manual —+—
basic
last ——
basic-senti
basic-proportional
senti-quotes —&—
non-content-senti

15 |-

hits ——«—
pagerank —s—

Cumulative Error
>

0 5 10 15 20 25 30 35 40 45 50

Number of Threads

Figure 2: The euclidian vector distance for each algorithm
from MANUAL as the number of examined threads goes from
1 to 50.

BASIC is able to pull off a surprise win. This is because the dom-
inant type of conversation changes during the latter threads in our
sample towards a type which favors BASIC.

Our first experiment, show in Figure 2, looks at how vector dis-
tance from MANUAL increases as the number of threads consid-
ered grows from one to fifty. Observe that since reputation is addi-
tive across threads, vector distance tends to grow as the number of
threads considered increases. What defines the quality of an algo-
rithm is the rate of increase.

In Table 4, we present the standard deviation of all of the algo-
rithms from the MANUAL baseline at fifty threads. This is calcu-
lated by first taking the difference of each author’s reputation from
the MANUAL reputation score and then finding the standard devia-
tion of the resulting series. Interestingly, the low standard deviation
posted by BASIC shows that in most cases the MANUAL labelings
spread quality equally across a thread’s answers.

Table 4: The table below shows each algorithm’s relative en-
tropy in comparison with MANUAL. It also shows the standard
deviation of the difference of each author’s contribution repu-
tation from that calculated by MANUAL. These calculations are
all performed after evaluating fifty threads

| Algorithm [Relative Entropy [o ‘
MANUAL 0.0 0.0
BASIC 0.077 0.583
LAST 0.221 1.868
BASIC-SENTI 0.349 17.3
BASIC-PROP 0.343 1.64
SENTI-QUOTES 0.127 1.07
SENTI-NC 0.139 1.12
HITS 0.555 1.303
PAGERANK 0.305 1.21

Figure 3 shows the algorithm’s relative entropy from MANUAL
as the number of threads considered goes from 1 to 50. Here, the
link analysis algorithms perform more poorly than in other metrics.
This is due to the fact that the entropy metric is more forgiving of

Table 2: Features Spaces: X (A)

Answer Quality Feature Space X (A) |]

A: Subject Length

A: Body Length

A: Positive Tone

A: Negative Tone

A: Objective Tone

A: Number of Children
A: Message Id

Number of words in the message subject

Number of lines in the message body

Sum of the positive values for all original words in the body
Sum of the negative values for all original words in the body
Sum of the objective values for all original words in the body
Number of direct responses to the message

Id of the message

Table 3: The relative quality orderings of each of our algorithms using different evaluation criteria.

[Metric | Best = Worst]
Vector Distance MANUAL, BASIC, SENTI-QUOTES, SENTI-NC, PAGERANK, HITS, BASIC-PROP, LAST, BASIC-SENTI
Relative Entropy MANUAL, BASIC, SENTI-QUOTES, SENTI-NC, LAST, PAGERANK, BASIC-PROP, BASIC-SENTI, HITS

Correlation Coefficient
Precision (last)
Precision (first)

MANUAL, BASIC, SENTI-QUOTES, SENTI-NC, LAST, PAGERANK, HITS, BASIC-SENTI, BASIC-PROP
MANUAL, HITS, PAGERANK, BASIC-SENTI, SENTI-QUOTES, SENTI-NC, BASIC, LAST, BASIC-PROP
MANUAL, BASIC, HITS, PAGERANK, SENTI-QUOTES, SENTI-NC, LAST, BASIC-SENTI, BASIC-PROP

sets with a few large outliers, due to the log factor in the evaluation.
As Table 4 shows, the standard deviation in the textual algorithms
is higher than in the link analysis ones.

T
manual —+—
basic

last ——
basic-senti —=—
15 - » basic-proportional 7
I senti-quotes —=&—
| non-content-senti
| By By :
[] X | “EBga hits ——<—
| hs/ERN | 8
1+ | | | pagerank —x— |

Relative Entropy

Number of Threads

Figure 3: Each algorithm’s relative entropy, from MANUAL, as
the number of examined threads goes from 1 to 50.

The correlation of the other algorithms’ results to MANUAL’S re-
sults is shown in Figure 4. Both the link analysis and textual algo-
rithms show high correlation. The relative rankings are similar to
those seen in Figure 3. As we will see in the next section, all of the
correlations presented above are better than those achieved by the
Weka based machine learning algorithms. This shows that reputa-
tion is not distributed amongst authors in a form which is tractable
to the linear approximation our Weka approaches use.

Reputation is only useful because it gives users a reason to trust.
In our last numeric experiment, we explore how good a predictor
of future answer quality a user’s reputation is. That is, how much
should we trust that a high reputation user will continue to con-
tribute highly to a discussion group? We calculate this by generat-
ing a reputation for each user on the first 25 threads in our sample.
We then compare this to the MANUAL reputation generated by each
user in the last 25 threads. Only users who posted at least one an-
swer in both sets are considered. In Table 5, we see that while
all of the algorithms return lower scores than before, an author’s
reputation is still an effective way of estimating future contribution

X
X" befe8gea88gag | SIVAval
& 888y poaaREe

<
9
k| 0
o [& manual —+— 7]
3 i
8 basic
last ——

basic-senti —=—
-05 | basic-proportional i
senti-quotes —=&—

non-content-senti
hits ——«—

pagerank —s—
1

1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Number of Threads

Figure 4: Each algorithm’s correlation coefficient as the num-
ber of examined threads goes from 1 to 50.

quality.

6.2 Machine Learning

Because of the nature of having to train and validate on differ-
ent sets, we exclude the machine learning algorithms from the first
section. In this section, we present the effectiveness of these algo-
rithms and place this in context with the other approaches.

The results from the Weka algorithms show disappointing cor-
relation coefficients. Since both of these provide linear approxi-
mations to the data, this was expected. ANN is able to do much
better, being competitive with all of the link analysis and textual
algorithms across metrics. We trained the LINEAR REGRESSION,
MS5P and ANN algorithms on the first 25 threads, consisting of 87
messages, and used the last 25 threads, with 106 messages, as vali-
dation. As Table 6 shows, neither LINEAR REGRESSION nor M5P
are able to predict the quality labeling with any degree of accuracy.
ANN shows a correlation in line or better with the other algorithms,
which were ran over the same validation set. Note that both Weka
algorithms found the same predictive formula of:

Table 5: Reputation as a predictor of future quality. To be valid
as a reputation system, a user’s reputation must be an accurate
indicator of the quality of a user’s future work. In the table
below, we present how the reputation calculated from the first
25 threads fares against the manual reputation gained by each
user over the last 25 threads. We measure this using VD (vec-
tor distance), CC (correlation coefficient) and RE (relative en-
tropy).

Algorithm VD | CC | RE
MANUAL 0.0 | 1.0 | 0.0
BASIC 45 | .69 | .36
LAST 7.17 | .65 | 46
BASIC-SENTI 253 | 38 | 47
BASIC-PROP 6.59 | 34 | .65
SENTI-QUOTES | 5.54 | .66 | 1.3
SENTI-NC 553] .66 | 1.3
HITS 589 | 54 |12
PAGERANK 5.64 | .62 | .85

Manual Score = —0.1593 * Number of Children
+0.8166 * Objective Tone
+0.1745

This results in the same correlation values for both algorithms.

Table 6: Machine Learning Results

Algorithm Correlation Coefficient
MANUAL 1.0
BASIC 0.9423
LAST 0.7920
BASIC-SENTI 0.4825
BASIC-PROP 0.4666
SENTI-QUOTES 0.8375
SENTI-NC 0.8139
HITS 0.6975
PAGERANK 0.7276
ANN 0.8663
M5P 0.2469
LINEAR REGRESSION 0.2469

Our next experiment observes how the results of the ANN algo-
rithm change as its inputs are generated by each of the other algo-
rithms. We see in Figure 5 that while there is some variation, the
input algorithm is largely irrelevant to the output.

Using the best input of PAGERANK, we see how ANN compares
to the other algorithms using all of our evaluation criteria. For this
comparison, all of the other algorithms are evaluated using the same
validation set as ANN.

Looking at vector distance in Figure 6, we see that ANN is able
to beat all of the other algorithms except for BASIC. The number of
threads considered here goes from 1 to 50. in every case, we train
ANN on the first half of the threads and validate on the second. The
results show are those produced by running each algorithm on the
validation set.

Interestingly, using the relative entropy metric, show in Figure 7,
ANN does much poorer in comparison to the other algorithms than
when we use vector distance.

basic

last

basic-senti

basic-proportional

senti-quotes

non-content-senti

HITS

PageRank
0 1.25 2.5 3.75 5

M Vector Distance M Correlation Relative Entropy

Figure 5: The quality of our ANN solution, using different algo-
rithm’s outputs as the input to ANN. While there is not much
change, we see that ANN does best using PAGERANK as its in-
put. The quality is evaluated on the last 25 threads in the test
set, after training on the first 25.

20

FEE

manual —+—

basic ——<—

last —x—

basic-senti —&—
basic-proportional
senti-quotes
non-content-senti
hits

pagerank

ann

15 -

Cumulative Error
5

Number of Threads

Figure 6: The Euclidian vector distance for each algorithm
from MANUAL as the number of examined threads goes from
1 to 50.

6.3 Precision

Our last experimental section moves from regression to classi-
fication. We wished to evaluate how closely our algorithms can
predict the most useful response in a thread. For this, we assume
that the message with the highest manual score is the most useful.
Ties are broken in preference to the last message, our reasoning be-
ing that the thread was not complete until the last high score was
added. Figure 9 shows the results, which are quite surprising to
us. The non-textual algorithms PAGERANK, and to a lessor extent
HITS, are the clear winners here.

This is due to these algorithms nature of aggressively favoring
the last message in a thread, while the textual algorithms tend to
spread credit out more evenly over all contributors. Since we break
ties in favor of the last message, this policy benefits the link analysis
theoretic algorithms at the expense of the textual. Note that because
of the way the best message is calculated, BASIC and LAST return
exactly the same results. In our graph, BASIC is hidden by LAST.

We then re-ran this experiment, this time breaking ties in favor of

[\ manual —+—
| mﬁrJ basic
25 | \ last —x— _|
| \ basic-senti —&—
| | basic-proportional
senti-quotes —=2—

©
| | I ‘s“\non-coment-senti
| AV " hits ——<—
|\ N/

pagerank

Relative Entropy

Number of Threads

Figure 7: Each algorithm’s relative entropy, from MANUAL, as
the number of examined threads goes from 1 to 50.

the first message. Figure 8 gives these results. As expected, BASIC-
SENTI and LAST do much poorer here, while the the link analysis
theoretic algorithms still dominate the sentiment-based ones.

S8
manual —+—

basic
last —«—
basic-senti —=—

Precision

pe8 basic-proportional
02 L senti-quotes —=2— |
non-content-senti
hits ———
pagerank ——
0 | 5eaEtEEE—L 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Number of Threads

Figure 8: Each algorithm’s precision as the number of exam-
ined threads goes from 1 to 50. Ties are broken in favor of the
first message.

6.4 Conversation Types

After observing how our algorithms perform over different threads,

we came to realize that our sample contains three separate thread
types. The first, a straight Technical Question Answer (TQA), de-
scribes threads where one initial author asks a technical question.
All of the responding threads are attempts to answer the question,
guided by possible followup questions asked by the original au-
thor. In this type of thread, later responses are more likely to be the
best, as these are the ones which finished the conversation, presum-
ably because the questions was completely answered to the satis-
faction of the original poster. Algorithms like PAGERANK, LAST,
and SENTI-NC do better in this type of thread because of their bias
towards later posts. Conceptually, the magnitude of the valid an-

swer space for TQA is 1.

Other threads followed a pattern where the initial post asks a
question which does not have a definite “true” answer. One exam-
ple of such a question is:

If you have done some interesting work using Pig, we
would like to know! Could you please, send a brief
description of the kind of work you are doing with Pig
and what you have learned from working woth [sic]
Pig: things that worked well, things that you would
like to be improved.

For NonSpecific (NS) questions like this, the manual grader scored
all responses equally, as they are all equally valid. Here, the mag-
nitude of the valid answer space is co. This throws off algorithms
which do well in the previous type of thread but rewards BASIC.
The preponderance of this type of question in the final threads ac-
counts for the comeback BASIC makes in all of our evaluations.

Lastly, there are questions which are a blend of TQA and NS. For
these, the magnitude of the valid answer space is finite but greater
than 1. SlashDot[24] article threads often take this form, where all
of the highly rated responses tend to be towards top of the responses
stack. From this, we deduce that everything of value to be said is
said quickly.

0.8 |-
0.6 |-
c
k=]
@
8 manual —+—
o basic
0.4 | B
last —«—
basic-senti —=—
basic-proportional
02 L senti-quotes —=— |
non-content-senti
hits ———
pagerank —x—
0 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Number of Threads

Figure 9: Each algorithm’s precision as the number of exam-
ined threads goes from 1 to 50. Ties are broken in favor of the
last message.

7. CONCLUSIONS AND FUTURE WORK

Email-based newsgroups are frequently the first place a techni-
cal user goes to find a solution when they get stuck trying to solve
a technical problem. Our test set for example is full of problem de-
scriptions and requests for help regarding the Hadoop project’s Pig
platform. Other users reply to these problem descriptions and even-
tually, hopefully, a working solution is arrived at. Archived online,
these discussions help many more users than those originally par-
ticipating. In most cases, all archived posts are presented without
external annotation. Our system allows for high quality posts, as
well as high quality authors, to be found quickly. Additionally, our
system can track the benefit each author provides to a discussion.

In a traditional email-based group, users reply to other posts, but
not always the initial post. They frequently quote one another, ask
for clarification, and express an opinion on other user’s proposed

solutions. We assume no outside quality metrics: there is no handy
way for later users to rate posts. However, the conversation is struc-
tured in a way that general emails are not: all posts in a thread are
by definition on the same topic.

Our work looks at ways of evaluating these discussions, out-
putting a reputation for each participating user. For this task, we
developed several algorithms leveraging sentiment analysis and the
internal quote structure of a post. We compare these to the link
analysis algorithms HITS and PAGERANK which do not use any
information about message’s text, in addition to naive algorithms
BASIC and LAST. We perform this comparison using a variety of
metrics, including relative entropy or KullbackLeibler divergence,
vector distance, precision, and the correlation between each algo-
rithm’s results and a manually calculated baseline. We find that a
user’s reputation is a good predictor of the quality of a user’s future
posts. Of the algorithms we explore, SENTI-QUOTES performs bet-
ter on numeric comparisons than HITS and PAGERANK, although
these have a higher precision. We are able to boost the quality our
automatic labelings using the ANN algorithm. Ironically, the naive
algorithm BASIC performs the best across our entire sample set.

In the future, we plan to use an expanded set of labeled emails
to validate against. Additionally, we plan to explore the benefits
and practicalities of a multi-phase evaluation: first the thread is
categorized as being of the form TQA, NS or blended. After this,
the best algorithm for each type is applied to posts in the thread. A
refinement may be also using each algorithm in a panel of experts
format, adjusting the weights of the experts as the type of thread
changes. Lastly, we are looking at moving from thread contribution
to expert finding. This would involve calculating total contributions
to a subject, as this subject is discussed across multiple threads.

8. REFERENCES

[1] B. Adler and L. de Alfaro. A content-driven reputation
system for the wikipedia. Proc. of the 16th Intl. World Wide
Web Conference, Jan 2007.

J. Bian, Y. Liu, D. Zhou, E. Agichtein, and H. Zha. Learning
to recognize reliable users and content in social media with
coupled mutual reinforcement. Proceedings of the 18th
international conference on the World Wide Web, Jan 2009.
A. Bouajjani, J. Esparza, and S. Schwoon. SDSIrep: A
reputation system based on SDSI. LECTURE NOTES IN
COMPUTER SCIENCE, Jan 2008.

C. Campbell, P. Maglio, A. Cozzi, and B. Dom. Expertise
identification using email communications. Proceedings of
the twelfth international conference on Information and
Knowledge Management, Jan 2003.

G. Carenini, R. Ng, and X. Zhou. Summarizing email
conversations with clue words. Proceedings of the 16th
international conference on World Wide Web, Jan 2007.

C. Dellarocas. The digitization of word-of-mouth: Promises
and challenges of online reputation systems. Management
Science, October 2003.

B. Dom, 1. Eiron, A. Cozzi, and Y. Zhang. Graph-based
ranking algorithms for e-mail expertise analysis. Proceedings
of the 8th ACM SIGMOD workshop on Research Issues in
Data Mining and Knowledge Discovery, Jan 2003.

A. Esuli and F. Sebastiani. Sentiwordnet: A high-coverage
lexical resource for opinion mining. fcc.itc.it, Jan 2007.

A. Ghose, P. Ipeirotis, and A. Sundararajan. Opinion mining
using econometrics: A case study on reputation systems. In
ANNUAL MEETING-ASSOCIATION FOR
COMPUTATIONAL LINGUISTICS, volume 45, page 416,

(2]

(3]

(4]

(5]

(6]

(7]

(8]
(9]

(10]

(1]

[12]

[13]

[14]
[15]
[16]
(171
(18]

[19]

[20]
[21]

(22]

(23]

[24]
[25]

[26]

[27]

2007.

N. Godbole, M. Srinivasaiah, and S. Skiena. Large-scale
sentiment analysis for news and blogs. Proceedings of the
International Conference on Weblogs and Social Media, Jan
2007.

R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. Proceedings of the 13th
international World Wide Web Conference, Jan 2004.

M. Hall and L. Smith. Practical feature subset selection for
machine learning. Computer Science, Jan 1998.

A. Jgsang, R. Ismail, and C. Boyd. A survey of trust and
reputation systems for online service provision. Decision
Support Systems, Jan 2007.

T. Karagiannis and M. Vojnovic. Email information flow in
large-scale enterprises. research.microsoft.com, Jan 2008.

J. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM (JACM), Jan 1999.

J. Konstan, B. Miller, D. Maltz, and J. Herlocker. Grouplens:
applying collaborative filtering to usenet news.
Communications of the ACM, Jan 1997.

S. Kullback and R. Leibler. On information and sufficiency.
The Annals of Mathematical Statistics, Jan 1951.

The mail archive. http://www.mail-archive.com.
L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web. lipn.fr,
Jan 1998.

B. Pang and L. Lee. Opinion mining and sentiment analysis.
books.google.com, Jan 2008.

P. Resnick, R. Zeckhauser, E. Friedman, and K. Kiwabara.
Reputation systems. Comm. ACM, 43(12):45-48, 2000.

W. Sack. Conversation map: An interface for very
large-scale conversations. Journal of Management
Information Systems, Jan 2000.

R. Sinatra, J. Stahl-Gemake, and N. Morgan. Using semantic
mapping after reading to organize and write original
discourse. Journal of Reading, Jan 1986.

Slashdot.org. http://www.slashdot.org.

S. Somasundaran, J. Ruppenhofer, and J. Wiebe. Discourse
level opinion relations: An annotation study. SIGdial
Workshop on Discourse and Dialogue, Jan 2008.

L. Witten and E. Frank. Data mining: practical machine
learning tools and techniques with java implementations.
ACM SIGMOD Record, Jan 2002.

J. Zhang, M. Ackerman, and L. Adamic. Expertise networks
in online communities: structure and algorithms.
Proceedings of the 16th international conference on the
World Wide Web, Jan 2007.

